A. Forg 1 (DP)
https://atcoder.jp/contests/dp/tasks/dp_a
转移:
当前在 第 $i$ 块石头上, 可以从第 $i-1$ 和 $i-2$ 块石头转移过来
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
vector<int> dp(n + 1, 1e9);
dp[1] = 0;
for (int i = 1; i <= n; i++)
{
if (i > 1)
{
dp[i] = min(dp[i], dp[i - 1] + abs(a[i] - a[i - 1]));
}
if (i > 2)
{
dp[i] = min(dp[i], dp[i - 2] + abs(a[i] - a[i - 2]));
}
}
cout << dp[n] << endl;
return 0;
}
B. Forg 2 (DP)
https://atcoder.jp/contests/dp/tasks/dp_b
在第一题的基础上, 可以从多个石头转移过来, 直接遍历并维护最小代价即可
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
vector<int> dp(n + 1, 1e9);
dp[1] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= k; j++)
{
if (i - j >= 1)
{
dp[i] = min(dp[i], dp[i - j] + abs(a[i] - a[i - j]));
}
}
}
cout << dp[n] << endl;
return 0;
}
C. Vacation (多维DP)
https://atcoder.jp/contests/dp/tasks/dp_c
定义 $dp[k][i]$: 第$i$天的最大幸福值, $k$ 表示活动类别
转移时, 注意不能有连续两天参加同种活动, 从其他活动转移过来, 并维护最大幸福值即可
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<long long> a(n + 1), b(n + 1), c(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i] >> b[i] >> c[i];
}
vector<vector<long long>> dp(3, vector<long long>(n + 1, 0));
for (int i = 1; i <= n; i++)
{
dp[0][i] = max(dp[1][i - 1], dp[2][i - 1]) + a[i];
dp[1][i] = max(dp[0][i - 1], dp[2][i - 1]) + b[i];
dp[2][i] = max(dp[0][i - 1], dp[1][i - 1]) + c[i];
}
cout << max({dp[0][n], dp[1][n], dp[2][n]}) << endl;
return 0;
}
D. Knapsack 1 (01背包)
https://atcoder.jp/contests/dp/tasks/dp_d
定义 $dp[i][j]$: 表示在前 $i$ 个物品, 重量为 $j$ 时, 能都获得的最大价值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> n >> m;
vector<long long> w(n), v(n);
for (int i = 0; i < n; i++)
{
cin >> w[i] >> v[i];
}
vector<vector<long long>> dp(n + 1, vector<long long>(m + 1, 0));
for (int j = w[0]; j <= m; j++)
{
dp[0][j] = v[0];
}
for (int i = 1; i < n; i++)
{
for (int j = 0; j <= m; j++)
{
if (j < w[i])
{
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
}
}
}
cout << dp[n - 1][m] << endl;
return 0;
}
E. Knapsack 2 (01背包+换意DP)
https://atcoder.jp/contests/dp/tasks/dp_e
注意到物品的体积达到了 $10^9$ 级别, 会暴内存, 第4题的dp定义不能用, 而物品的价值才 $10^5$ 级别
因此, 转换思路, 定义 $dp[i][j]$: 考虑前 $i$ 件物品, 价值为 $j$ 时的最小体积
同等价值的情况下, 体积更小, 可以在之后容纳更多的物品, 增加总价值
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> n >> m;
vector<long long> w(n), v(n);
long long sum = 0;
for (int i = 0; i < n; i++)
{
cin >> w[i] >> v[i];
sum += v[i];
}
vector<vector<long long>> dp(n + 1, vector<long long>(sum + 1, 2e9));
dp[0][0] = 0;
long long ans = 0;
for (int i = 1; i <= n; i++)
{
for (long long j = sum; j >= 0; j--)
{
if (j < v[i - 1])
{
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - v[i - 1]] + w[i - 1]);
}
if (dp[i][j] <= m)
{
ans = max(ans, j);
}
}
}
cout << ans << endl;
return 0;
}
F. LCS (DP)
https://atcoder.jp/contests/dp/tasks/dp_f
定义 $dp[i][j]$: 字符串 s
枚举到 $i$, 字符串 t
枚举到 $j$, 所能达到的最大最长公共子序列
转移时:
- $s[i] = t[j]$: $i, j$ 都向后移动
- $s[i] \not ={t[j]}$: $dp[i][j] = \max(dp[i - 1][j], dp[i][j - 1])$
输出具体方案时, 使用递归
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
string s, t;
cin >> s >> t;
s = "1" + s;
t = "1" + t;
int n = s.size(), m = t.size();
vector<vector<int>> dp(n + 1, vector<int>(m + 1));
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (s[i] == t[j])
{
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
string ans = "";
function<void(int, int)> getans = [&](int i, int j)
{
if (i == 0 || j == 0)
{
return ;
}
if (s[i] == t[j])
{
ans += s[i];
getans(i - 1, j - 1);
} else if (dp[i][j] == dp[i][j - 1])
{
getans(i, j - 1);
} else {
getans(i - 1, j);
}
};
getans(n - 1, m - 1);
reverse(ans.begin(), ans.end());
cout << ans << endl;
return 0;
}
G. Longest Path (DP+dfs)
https://atcoder.jp/contests/dp/tasks/dp_g
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> n >> m;
vector<vector<int>> adj(n);
vector<bool> vis(n, false);
for (int i = 0; i < m; i++)
{
int u, v;
cin >> u >> v;
u--;
v--;
vis[v] = true;
adj[u].emplace_back(v);
}
vector<int> dp(n, -1);
function<int(int)> dfs = [&](int u)
{
if (dp[u] != -1)
{
return dp[u];
}
dp[u] = 0;
for (auto & v : adj[u])
{
dp[u] = max(dp[u], dfs(v) + 1);
}
return dp[u];
};
int ans = 0;
for (int i = 0; i < n; i++)
{
if (!vis[i])
{
ans = max(ans, dfs(i));
}
}
cout << ans << endl;
return 0;
}
H. Grid (DP)
https://atcoder.jp/contests/dp/tasks/dp_h
模板题, 就只有两个方向可以转移
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> n >> m;
vector<vector<char>> grid(n, vector<char>(m));
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
cin >> grid[i][j];
}
}
vector<vector<long long>> dp(n, vector<long long>(m, 0));
dp[0][0] = 1;
long long mod = 1e9 + 7;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < m; j++)
{
if (i == 0 && j == 0 || grid[i][j] == '#')
{
continue;
} else if (i == 0)
{
dp[i][j] = dp[i][j - 1] % mod;
} else if (j == 0)
{
dp[i][j] = dp[i - 1][j] % mod;
} else {
dp[i][j] = (dp[i - 1][j] + dp[i][j - 1]) % mod;
}
}
}
cout << dp[n - 1][m - 1] << endl;
return 0;
}
I. Coins (概率DP)
https://atcoder.jp/contests/dp/tasks/dp_i
定义 $dp[i][j]$: 考虑前 $i$ 个硬币, 其中 $j$ 个硬币朝上的概率
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<double> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
vector<vector<double>> dp(n + 1, vector<double>(n + 2, 0.0));
dp[0][0] = 1;
for (int i = 1; i <= n; i++)
{
for (int j = 0; j < n; j++)
{
dp[i][j] += dp[i - 1][j] * (1 - a[i]);
dp[i][j + 1] += dp[i - 1][j] * a[i];
}
}
double ans = 0.0;
for (int i = 1; i <= n; i++)
{
if (2 * i > n)
{
ans += dp[n][i];
}
}
cout << fixed << setprecision(11) << ans << endl;
return 0;
}
J.Sushi (期望DP)
https://atcoder.jp/contests/dp/tasks/dp_j
定义 $dp[i][j][k]$: 表示有 $i/j/k$ 个盘中剩余 $1/2/3$ 块寿司的期望
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
map<int, int> mp;
for (int i = 0; i < n; i++)
{
int num;
cin >> num;
mp[num] += 1;
}
vector<vector<vector<double>>> dp(n + 2, vector<vector<double>>(n + 2, vector<double>(n + 2, 0)));
for (int k = 0; k <= n; k++)
{
for (int j = 0; j <= n; j++)
{
for (int i = 0; i <= n; i++)
{
if (i || j || k)
{
int d = i + j + k;
if (i > 0) dp[i][j][k] += dp[i - 1][j][k] * i / d;
if (j > 0) dp[i][j][k] += dp[i + 1][j - 1][k] * j / d;
if (k > 0) dp[i][j][k] += dp[i][j + 1][k - 1] * k / d;
dp[i][j][k] += 1.0 * n / d;
}
}
}
}
cout << fixed << setprecision(15) << dp[mp[1]][mp[2]][mp[3]] << endl;;
return 0;
}
K.Stones (博弈DP)
https://atcoder.jp/contests/dp/tasks/dp_k
定义 $dp[i]$: 表示剩余 $i$ 个石头, 先手赢记为1, 后手赢记为0
转移时:
判断当前状态是先手赢还是后手赢,需看前一状态。若前一状态的先手赢了,那么这一状态的先手就输了,反之亦然
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
vector<bool> dp(k + 1, false);
for (int i = 1; i <= k; i++)
{
bool ok = true;
for (int j = 1; j <= n; j++)
{
if (i >= a[j])
{
ok &= dp[i - a[j]];
}
}
if (!ok)
{
dp[i] = true;
}
}
cout << (dp[k] ? "First" : "Second") << endl;
return 0;
}
L.Deque (区间DP)
https://atcoder.jp/contests/dp/tasks/dp_l
定义 $dp[i][j]$: 表示区间 $[i, j]$ 插值
转移时:
- Taro: 插值尽可能大, $dp[i][j] = \max (dp[i + 1][j] + a[i], dp[i][j - 1] + a[j])$
- Jiro: 插值尽可能小, $dp[i][j] = \min (dp[i + 1][j] - a[i], dp[i][j - 1] - a[j])$
总区间长度为 $n$, 当前区间为 $[i, j]$, 通过判断已经执行过的操作数量 $n - (j - i + 1)$ 的奇偶性来选择对应的转移函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<long long> a(n + 1);
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
vector<vector<long long>> dp(n + 2, vector<long long>(n + 2, 0));
for (int len = 1; len <= n; len++)
{
for (int l = 1; l + len - 1 <= n; l++)
{
int r = l + len - 1;
if ((n - len) % 2 == 1)
{
dp[l][r] = min(dp[l + 1][r] - a[l], dp[l][r - 1] - a[r]);
} else {
dp[l][r] = max(dp[l + 1][r] + a[l], dp[l][r - 1] + a[r]);
}
}
}
cout << dp[1][n] << endl;
return 0;
}
M. Candies ()
1
N. Slimes
1
O. Matching ()
1
P. Independent Set ()
1
Q. Flowers ()
1
R. Walk ()
1
S. Digit Sum ()
1
T. Permutation ()
1
U.Grouping ()
1
V. Subtree ()
1
W. Itervals ()
1
X. Tower ()
1
Y. Grid 2 ()
1
Z. Forg 3 ()
1